International Journal of Pharmaceutics 407 (2011) 12-20

journal homepage: www.elsevier.com/locate/ijpharm

Contents lists available at ScienceDirect

International Journal of Pharmaceutics ©

H PHARMACEUTICS

P

‘i:*E

Computational and experimental investigation of needle-shaped crystal breakage

Zdenék Grof?, Carl M. Schoellhammer®, Pavol Rajniak®, Frantisek Stépaneka:*

a Department of Chemical Engineering, Institute of Chemical Technology, Technickd 5 166 28 Prague, Czech Republic

b Merck & Co., Inc., West Point, PA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 14 June 2010

Accepted 29 December 2010
Available online 11 January 2011

Keywords:

DEM

Population balance modeling
Fragmentation

Daughter length distribution
Breakage kernel

Needle-shaped crystals are a common occurrence in many pharmaceutical and fine chemicals processes.
Evenifthe particle size distribution (PSD) obtained in a crystallization step can be controlled by the crystal
growth kinetics and hydrodynamic conditions, further fluid—solid separation steps such as filtration, filter
washing, drying, and subsequent solids handling can often lead to uncontrolled changes in the PSD due to
breakage. In this contribution we present a combined computational and experimental methodology for
determining the breakage kernel and the daughter distribution functions of needle-shaped crystals, and
for population balance modeling of their breakage. A discrete element model (DEM) of needle-shaped
particle breakage was first used in order to find out the appropriate types of the breakage kernel and the
daughter distribution functions. A population balance model of breakage was then formulated and used in
conjunction with experimental data in order to determine the material-specific parameters appearing in

the breakage functions. Quantitative agreement between simulation and experiment has been obtained.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Needle-shaped crystals (crystals with a large aspect ratio)
are commonly encountered in pharmaceutical processes. While
the particle size distribution (PSD) can nowadays be controlled
relatively precisely in the crystallization step by adjusting the
supersaturation, seeding, and hydrodynamic conditions in the crys-
tallizer (Yu et al., 2007), further downstream fluid-solid separation
steps such as filtration, filter washing, drying, and subsequent
solids handling can often lead to uncontrolled changes in the PSD
due to attrition and breakage (Miiller et al., 2006; Kalman, 2000).
The effect of breakage on the particle size distribution can be
described by population balances (Hill and Ng, 1997; Kostoglou,
2007). For population balance models of breakage to be effec-
tive, two material- and stress-field specific functions need to be
known: the breakage kernel (selection function) and the daughter
distribution function (breakage function) (Austin, 1971; Kelly and
Spottiswood, 1990). The breakage kernel determines the breakage
rate of particles from each size fraction, while the daughter distri-
bution function describes the size distribution of daughter particles
(fragments) that are formed once a particle of a given size does
break.

Although methodologies for experimental determination of the
breakage kernel and daughter distribution functions are known
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(Guptaetal,, 1981), they either require a relatively large number of
experiments or the solution of an inverse problem (Sathyagal et al.,
1995). An alternative approach is based on trying to determine the
functions theoretically (Hill, 2004) or computationally by detailed
mechanistic modeling of the breakage of single particles (Khanal
et al.,, 2005) or particle ensembles (Bobet et al., 2009; Ketterhagen
etal., 2008). Grof et al. (2007) recently demonstrated the feasibility
of detailed numerical simulation of the breakage of needle-shaped
particles within a random packed bed subjected to uni-directional
compaction, using the discrete element method (DEM). Elongated
particles with a chosen aspect ratio have been created by linking
individual spherical discrete elements by rigid bonds, characterized
by a given bending stiffness and ultimate bending strength. A ran-
domly packed bed of these elongated particles has been formed and
gradually compressed between two infinite parallel solid planes.
The particle size distribution as a function of the compaction ratio
has been studied while systematically varying the individual par-
ticle strength, the initial particle length, and its distribution.

The aim of the present work is to develop and validate a novel
methodology for the determination of the breakage kernel and
daughter distribution functions, based on the combination of com-
putational and experimental techniques. The methodology consists
of four parts: (i) the DEM simulation of needle-shaped particle
breakage under uni-axial compaction as described in (Grof et al.,
2007); (ii) post-processing of the DEM simulation outputs using
population balance models and explicit evaluation of the appro-
priate types of the breakage functions; (iii) experimental study
of the breakage of real needle-shaped crystals under uni-axial
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Nomenclature

a compression parameter (dimensionless)
A die cross-section area (m?)

C span of Gaussian function (dimensionless)
E specific energy input (J/kg)

F compaction force (N)

fiy) compression function (ms=2)

g(F) alternative form of compression function (m/kg)

h bed height (m)

k(L;) breakage kernel (kg/J)

ko breakage constant (dimensionless)

L; length of a crystal from the ith size class (m)

Lo characteristic length (m)

m sample mass (kg)

N number of size classes (dimensionless)

n; number concentration of crystals from the ith size
class (kg™1)

P compaction pressure (Pa)

ri breakage rate (J-1)

breakage probability (dimensionless)

U objective function (kg2)

y relative piston position (dimensionless)
z piston travel distance (m)

Greek letters

B, j) daughter distribution function (dimensionless)

B'(x) transformed (universal) daughter distribution func-
tion (dimensionless)

y breakage exponent (dimensionless)

compaction; (iv) fitting of the population balance models to the
experimental data and evaluation of the material-specific parame-
ters in the breakage functions.

2. Population balance model

When applying the rigorous population balance model (Vanni,
2000) to needle-shaped crystals we assume that the crystals are lin-
ear aggregates of primary particles (or “monomers”) of equal size.
Such a description is consistent with the multi-element particle
model (Favier et al., 1999; Grof et al., 2007) used for the repre-
sentation of elongated (needle-shaped) particles or crystals. This
assumption makes it possible to correlate the length L; of a crystal
with the number of primary particles i that form it as:

The particle size distribution is then a discrete function, whose
values n;,i=1, ..., N are the number concentrations of the particles
consisting of i monomers and N is the number of size classes.

Theoretical treatments of Weichert (1992), Fuerstenau et al.
(1996, 2004), lead to expressing the population balance equations
for the breakage under uni-axial compression in terms of the spe-
cific energy expended rather than in grinding time as follows

N
dn;
E =N+ B (2)
j=i+1
The first term on the right side of Eq. (2) is the rate of death of

particles i to generate smaller fragments, while the second one is
the birth of particles i due to rupture of larger particles.

The specific energy input E can be equated with the work of
compression per unit feed mass (Fuerstenau et al., 1996)
APz  Fz
Ex—=—, 3)
m m
where A is the die cross-sectional area, P is the compaction pres-
sure, F is the compaction force, m is the sample mass which is
proportional to the initial bed height

m ~ ho (4)

and z is the piston travel distance which may be expressed in terms
of hg and h, the initial and instantaneous bed heights

Z=h0—h. (5)

Kawakita and Liidde (1971) listed 15 equations of compaction
that relate pressure with volume (or bed height). For example the
Kawakita piston compression equation has the form

z ho—h abP acF
m Y= Thy T14bP T1+cF (6)
or
y
P=_—"—, 7
ba ) 7

where y is the degree of volume reduction (or relative piston posi-

tion) and a and b are parameters characterizing the powder. The

parameter a is equal to the initial porosity in the case of piston

compression. By combining relations (3)-(7) and lumping all pro-

portionality constants, the specific energy may be expressed as
~py~ Y

ErPyr = ; (8)

and consequently

2ay —y?
dE ~ yiyzdy =f(y)dy. 9)
(a-y)
Breakup is usually a first order process with respect to particle
concentration, since it generally depends on the local stress field
acting on the particles. It is convenient to express the death rate as

ri = k(Li)n;, (10)

where k(L;) is the breakage kernel. There is a strong dependence of
the breakage kernel on particle size, L;. Different breakage kernels
are summarized in (Vanni, 2000; Rajniak et al., 2008).

Finally, introducing (9) and (10) into the rigorous population
balances (2) and lumping different proportionality factors together
we get the population balance equations in terms of the relative
piston position y

N
dn;
T = TORLI+ D7 AR (an

j=i+

with f{y) defined by Eq. (9).

There exist many different fragment (daughter) distribution
functions B;; defining the number of daughter fragments in class i
produced upon breakup of a mother particle j (Vanni, 2000; Rajniak
et al,, 2008). Here we have considered only the formation of two
fragments during every breakage event, i.e. corresponding binary
breakage distribution functions are normalized with respect to con-
dition (12)

j-1
> Bi=2. (12)
i=1
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Fig. 1. Simulation setup for discrete element modelling of uniaxial compression and breakage of needle-shape particles.

An alternative form of the model equations are based on expres-
sion (6) with the compression force F as the independent variable.
For the specific energy input we can write

CF?
b~ (13)
and consequently
2
dE~ 2 dF _ g(F)aF. (14)
(1 +cF)

The alternative population balance equations then have the fol-
lowing form

N
% = —g(Pk(Ln; + Y _ Byg(FIk(L)n;. (15)

J=i+1

In the next chapter we will discuss how the discrete ele-
ment methodology helps elucidate appropriate expressions for the
breakage kernel and daughter distribution functions.

3. Discrete element method

3.1. Simulation of the compression and breakage of a layer of
particles

A methodology based on the discrete element method (Cundall
and Strack, 1979) modified to treat non-spherical particles by the
multi-element model (Favier et al., 1999) has been used to simulate
the movement and breakage of individual needle-shaped particles.
The magnitude and the location of contact forces at each particle
determine the load on the particle. Particles are treated as loaded
beams in order to calculate bending and shear stresses along the
particle. When a set threshold value anywhere along a particle is
exceeded the particle breaks into two daughter particles at the
point of maximum stress. A full description of the algorithm has
been given in our earlier work (Grof et al., 2007).

In order to determine the breakage kernel and the daughter
distribution function for a sample of needle-shaped particles, the
computational breakage experiment has been carried out in the fol-
lowing way. First, a population of 800 particles with a specified size
distribution was generated inside the computational box with peri-
odic boundary conditions in the direction of the x- and y-axes and
a fixed wall perpendicular to the xy-plane (at the bottom boundary
of the box). The particles were allowed to settle down due to gravi-
tational forces in the direction of the z-axis thus forming the initial
random packing desired. A second wall parallel with the xy-plane
was then placed above the packing and compression was simulated
by a stepwise movement of this piston (cf. Fig. 1). After each step

of the piston, the particles were allowed to move and rearrange
in the packed layer until a static state was achieved. The stress on
every particle was then calculated and particle breakage carried out
where required.

Every breakage event encountered during the simulated com-
pression experiment has been recorded and the following data
collected: (i) the relative piston position (compression ratio)
y=(hg — h)/hg, where h and hg are the current and the initial pack-
ing heights, respectively, determined by the piston position; (ii) the
length L; of the (mother) particle before breakage; (iii) if the particle
broke during a given compression step, the length of the shorter
daughter particle. The results collected from simulated compres-
sion experiments of five different particle packings are shown in
Fig. 2, where each curve represents the particle length distribu-
tion at a given compression ratio y. The error bars indicate the
standard deviations due to the five different random realizations
of the initial particle packing. The gradual particle breakage is
clearly demonstrated as the particle size distribution shifts towards
shorter particles and the number of longer particles diminishes
with increasing y.

3.2. Breakage kernel

The breakage kernel is obtained by post-processing of the break-
age events recorded during the computational experiment. The
breakage events were first grouped into M intervals m=0, ..., M
according to the compression ratio y for which they occurred. A

300 T T
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2 250 0.19 —x— A
o 0.29 —&—
£ i 0.38 —=— |
8 200 0.48 —o—
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5 150
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crystal length, L,

Fig. 2. Evolution of PSD with compression ratio y in a DEM simulation. The error
bars represent the standard deviation obtained by compounding the results of com-
pressing five different random realizations of the initial particle packings.
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breakage probability S;(L;) is defined as the probability that a
particle of length L; that was originally present in the system at
compression ratio yn,; disappeared from the system (i.e., it was bro-
ken) at some stage while the compression ratio y was in the range
(Ym ; Ym+1)- This breakage probability was calculated according to

i(Ym1)
S =1 S (1e)
where n;(yn,) is the number of particles of length L; present in the
system at compression ratio y,; and n;(y;,+1) is the number of such
particles still “surviving” in the system at y,,+1. Note that any newly
formed particles of length L; are not counted into n;(ym,+1) when
evaluating Si(L;).

Let us derive the relation between the breakage probability
Sm(L;) and the breakage kernel k(L;), introduced above. From Eq.
(11), the number of particles undergoing breakage during the inter-
val (Ym ; Ym+1) is

Ang = (0i(ym) — 0i(Ym+1)) = K(Li)F (¥) Ayn;. (17)
Assuming that n;=n;(ym) and substituting Eq. (17) into the rela-

tion for S;; (16) one obtains

Sm(Li) = KL P)Yms1 = Ym). (18)

The breakage probability S;;(L;) evaluated from DEM simula-
tions is shown in Fig. 3a. Then, as shown in Fig. 3b and c the curves
can be fitted by the sigmoidal and power-law functions of the form:

1
" 1+exp(=ym(L; — Lo,m))
Sm(L;) = a(L; — Lo, )™,

Sm(L;) and (19a)

(19b)

It can be seen from Fig. 3b and c that the sigmoidal function
provides a better fit of the breakage probability obtained by DEM
simulation than the power law function. In particular, the sigmoidal
function satisfies the property that in the limit for large particles,
the breakage probability approaches unity, while the power law
function diverges. Using a single parameter « for the entire range
of the compression ratio, the power law is able to fit the DEM data
well only at small compression ratio y, but fails for the two curves
at y>0.48. A better fit could be obtained by using three parameters
in the power law, i.e., by allowing the value of « to depend on the
compression ratio. On the other hand, the sigmoidal function is
able to fit the data well over the entire range of y with only two
adjustable parameters.

3.3. Daughter distribution function

To evaluate the daughter distribution function (i, j), the entire
set of breakage events recorded for compression in the range
(Yo :¥m) was used. Unlike the breakage probability Si;(L;), there
is no reason to assume that the daughter distribution (i, j) would
depend on the compression ratio. Moreover, the larger number of
breakage events analyzed reduces the variations of data points in
the evaluated function. Let D;; be the number of breakage events
where the particle of length j breaks into particles of length i and
j—1, respectively, and let i<j—i (i.e. the shorter of the two frag-
ments is given the index i). Then the points in the the daughter
distribution f(i, j) are calculated as

Dl,]
/2

E Dy
k=1

and the other half can be completed employing the symmetry of
the distribution

B.J) =BG -1.0) i=j/2,....].

Bi.j) = (20a)

L i=1,...,j/2

(20b)
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Fig. 3. Compression-dependent breakage kernel from DEM simulation: (a) compu-
tation data with error bars representing the standard deviation obtained from five
simulation runs, (b) fit of data by a sigmoidal function (19a), (c) fit of data by a
power-law function (19b).

If the breakage is self-similar, then a single daughter distribution
function B'(x), where x=i/j, characterizes the breakage of mother
particles of any length j. For binary breakage (two fragments from
a single breakage event) the daughter distribution functions are
normalized to 2:

J 1
E / Bx)dx =2. (21)
i=1 0

The normalized daughter distribution 8'(x) obtained from the
DEM simulations is shown in Fig. 4. Based on DEM simulation data
analysis, it has been confirmed the breakage is indeed self-similar,
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Fig.4. Normalized (universal) daughter distribution 8'(i/j, j). Mean values evaluated
from five different random sample realizations are displayed and fitted by a Gaussian
function (22).

as breakage functions for particles of different lengths superimpose
on a single master curve that can be fitted by the Gaussian function

2 (x—p)?
'(x) = exp | —
Bx)= —=exp ( 507
with parameters ©=0.5 and 0=0.1276+0.0016. Therefore, the
daughter distribution for mother particle of length L; is

_ (i-j/2)
jov2m 2Go) )’

where the linear dependence of distribution width on mother par-
ticle length is described by the proportional parameter o.

(22)

B, j) (23)

4. Fitting of computational DEM results by PBM

In the previous section, it has been demonstrated that the two
a priory unknown functions required in the population balance
equations (11) - i.e. the breakage kernel f{y)k(L;) and the daughter
distribution Bj; - can be directly evaluated by post-processing of
DEM simulation results. There are two ways of utilizing the results
from Sections 3.2 and 3.3. The breakage kernel and the daugh-
ter distribution can be constructed directly by finding an arbitrary
function able to provide a good approximation of f{y)k(L;) or B;
data, then performing a least-square regression of those data and
evaluating the function’s parameters. The other option is to use
DEM results for proposing suitable shapes of the breakage kernel
and daughter distribution functions. The parameters of those func-
tions are then found by optimization to achieve the best match
of particle size distribution predicted by PBM with DEM result.
The latter method will be demonstrated in this section. Its main
advantage is that it only requires the PSD at several compression
ratios as its input, which is also the format in which experimental
data are available (unlike in DEM simulations, the recording and
post-processing of single breakage events is not feasible in a real
experiment). Thus, the estimation method for PBM functions and

parameters can be the same, but the input data can originate either
from a computational or from a physical experiment.

The key observations from the evaluation of the DEM simula-
tions discussed in section 3 are that the breakage kernels can be
more or less successfully fitted by power-law and sigmoidal func-
tions

k(L;) = ko(L; — Lo)Y
" 1+exp(y(Li - Lo))

and that the daughter distribution function is self-similar and can
be fitted by the Gaussian function. Let us now find the values of
parameters appearing in the breakage kernel and daughter dis-
tribution function by fitting a population balance model (PBM)
introduced in Section 2 to the DEM results.

After introducing the power-law compression breakage kernel
(24a) into the PB equations (11) with relative piston position y as
the independent variable, the following final form of PBE for each
size class i is

(24a)

k(L;) (24b)

N
dn; 2ay — y?
- = koyiyz —(Li — Lo)'n; + Zﬁij(’-j —Lo)'n;

2
T a-y) )

j=it1

and similarly also for the sigmoidal breakage kernel (24b). The
parameters f;; are calculated from the Gaussian daughter distri-
bution function

(i—j/2y

There are five adjustable parameters in the model equations (25)
and (26), i.e., the compression parameter qa, the breakage constant
ko, the breakage exponent vy, the characteristic length Ly and span
of the Gaussian daughter distribution function C.

A customized (Compaq Visual Fortran) version of the DIRECT
optimization algorithm (Perttunen et al.,, 1993; Bjorkmann and
Holmstrom, 1999) was employed for finding the global minimum
of the objective function U

7 N
U =" (ym) ~ 15 ym))’

m=1 i=1

(26)

(27)

constrained by the population balances (25). nj(ym)is the calculated
or experimental number concentration of crystals of the class i at
the piston position yp,.

The optimized parameter values and the corresponding objec-
tive functions are compared in Table 1 and a graphical comparison
with the DEM simulation results is shown in Fig. 5. Please note that
the DEM data in Fig. 5 are the same as those in Fig. 2 but they are
shown in the cumulative rather than differential form for clarity.
It can be concluded that the fit is visually satisfactory for both the
power-law and sigmoidal function. The objective function at opti-
mum (U=0.0113) s slightly better when employing the power-law
breakage kernel than for the sigmoidal kernel (U=0.0168). A possi-
ble reason is that the functions calculated from DEM results (Fig. 3)
have a sigmoidal shape only for the highest compressions (at pis-
ton positions yg and y7) as it was already discussed in relation to
Fig. 3. It is interesting to note that the value of the compression

Table 1
Fitting of the DEM results by PBM.
Breakage kernel, f{y)k(L;) fy) a ko y Lo C U
f)(Li —Lo)” Eq. (9) 0.730 0.0185 1.75 6 0.081 0.0113
fw) Eq. (9) 0.733 1.35 0.667 12.7 0.07 0.0168

1+ exp(—y(Li — Lo))
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Fig. 5. Comparison of size distribution obtained by the DEM simulation with the
distribution calculated by PB model using (a) sigmoidal and (b) power-law form of
the breakage kernel in the PB equations.

parameter is almost exactly the same for both kernels (a = 0.730 vs.
0.733) and is also close to the theoretical value of the initial poros-
ity (69 =0.77) of the needle-shape crystals in the DEM simulation
sample. Also the optimum span of the self-similar Gaussian daugh-
ter distribution function is comparable for both cases as it is also
illustrated in Fig. 6b. The values of other optimum parameters are
different because of the different mathematical expressions used
for the breakage kernels.

5. Experimental study

The experimental breakage study was carried out using crystals
of a pharmaceutical compound, a white crystalline solid composed
of needle-shaped particles with a mean length of approximately
31 pm and an aspect ratio of 70. These crystals were chosen for
this study because their size, shape and fragility are characteristic
of typical materials encountered during the process development
for active pharmaceutical ingredients (APIs).

The uni-axial compaction breakage experiment was carried out
as follows. First, approximately 4 mg of the powder was weighed
out and loaded into a 3.8 mm diameter stainless steel die. The
top punch was placed gently into the die, resting on top of the
sample. An automatic texture analyzer (Stable Micro Systems
TA.XT2i) was then used to apply force on the sample and measure

a
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Fig. 6. (a) The breakage kernel and (b) the daughter distribution functions in PB
equations.

the force-displacement curve. Each sample was compacted once
under a normal load of 200, 400, 800, and 1600 g (corresponding
to pressures of 0.173, 0.346, 0.692 and 1.381 MPa, respectively)
with the punch displacement rate set to 0.1 mmy/s. Once the
specified compression load was achieved, the upper punch was
immediately raised away from the sample. An example of typi-
cal force-displacement curves obtained in the course of a single
experiment is shown in Fig. 7.

Once the sample had been compacted, it was gently pushed
out of the die and into a sonication vial where it was dispersed
in Isopar G with 0.25% Lecithin, which the sample is not soluble
in. The sample was sonicated for 30's intervals until the pellet was
evenly dispersed in the fluid. A microscope slide was cleaned, and
using a dropper, one drop was placed on the slide from approxi-
mately 1 cm above the slide. The liquid was allowed to air-dry and
then the sample was visualized using an Olympus SZX16 Stereo
Microscope. Ten images were randomly selected from across the
width of the slide and analyzed using the Image Pro Plus software.
The length, aspect ratio, and projected area were the three statistics
taken from each image. From this data, particle size distributions
were created and compared to an uncompacted standard.

Representative images of samples compacted to various forces
can be seen in Fig. 8. The evolution of the PSD with increasing
compaction load is shown in Fig. 9 and the mean particle size as
a function of the compaction load is summarized in Fig. 10. It can
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Table 2
Fitting of the experimental data by PBM.
Breakage kernel, g(F)k(L;) g(F) c ko Y Lo C U
g(F)(Li —Lo)” Eq.(14) 3.90 0.0079 1.75 0 1.1 0.0793
&(F)

—_— Eq.(14 10.5 0.81 0.75 4 1.2 0.0218
T+ exp(— (L — Lo)) @19
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Fig. 11. Comparison of PBM with experiment.

be observed that particle size plateaus with increased compaction
force, suggesting that the particles are no longer susceptible to
uni-axial compaction breakage past a certain point.

6. Fitting of experimental results by PBM

The experimental data discussed in Section 5 were analyzed by
the same optimization procedure that was used for the DEM data
evaluation as described in Section 4. The population balance equa-
tions (15) with the compression force F as the independent variable
were employed for the calculation of the number concentrations at
different compressions.

After introducing the sigmoidal compression breakage kernels
(24b) into the PB equations (15) with the compression force F as
the independent variable, we obtain the following form of the pop-
ulation balance model for each size class i

dn; 2F + cF?
i _
dF (1 4 cF)?

N
—1 3 Biny
1+ exp(y(L; — Lo)) et 1+ exp(y(L; - Lo))

(28)

The values of the optimum parameters and objective func-
tions are compared in Table 2 and their graphical comparison with
experimental data is shown in Fig. 11. In this case the fit is signifi-

cantly better when employing the sigmoidal function. This can be
explained by the particle size plateau at higher compaction forces
(Fig. 10) suggesting that the particles are no longer breaking beyond
a certain point and the corresponding breakage kernel indeed has a
sigmoidal shape, as was observed also in the computational “exper-
iments” by DEM.

7. Conclusions

It has been shown that computational and experimental tech-
niques can be combined successfully into a single methodology that
allows the identification of the breakage kernel and the daughter
distribution functions for needle-shaped crystals, and of material-
specific parameters appearing therein. A single-pass uni-axial
compaction experiment has been shown to be sufficient, with no
need for repeated differential breakage experiments. This approach
can significantly reduce the experimental effort and therefore the
time needed for the identification of the breakage kernel and
daughter distribution functions and of material-specific parame-
ters when the breakage properties of a new chemical entity (NCE)
are to be determined. The approach combining modeling with
experiment is particularly valuable in early-phase pharmaceuti-
cal process development when only small quantities of the NCE
are often available and it is desirable to maximize the information
gain from a limited number of experiments. By the combination of
small-scale experimental analysis, population balance modeling,
and DEM simulation, the information needed for the estimation of
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in-process behavior of the powder can be obtained. Challenge areas
for future research include the simulation of other modes of break-
age - such as breakage under shear and breakage in the presence
of capillary liquid bridges - as well as the integration of particle
breakage models with large-scale CFD or DEM simulations of entire
process vessels in order to predict the overall extent of breakage as
a function of process-level parameters.
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