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Needle-shaped crystals are a common occurrence in many pharmaceutical and fine chemicals processes.
Even if the particle size distribution (PSD) obtained in a crystallization step can be controlled by the crystal
growth kinetics and hydrodynamic conditions, further fluid–solid separation steps such as filtration, filter
washing, drying, and subsequent solids handling can often lead to uncontrolled changes in the PSD due to
breakage. In this contribution we present a combined computational and experimental methodology for
EM
opulation balance modeling
ragmentation
aughter length distribution
reakage kernel

determining the breakage kernel and the daughter distribution functions of needle-shaped crystals, and
for population balance modeling of their breakage. A discrete element model (DEM) of needle-shaped
particle breakage was first used in order to find out the appropriate types of the breakage kernel and the
daughter distribution functions. A population balance model of breakage was then formulated and used in
conjunction with experimental data in order to determine the material-specific parameters appearing in
the breakage functions. Quantitative agreement between simulation and experiment has been obtained.
. Introduction

Needle-shaped crystals (crystals with a large aspect ratio)
re commonly encountered in pharmaceutical processes. While
he particle size distribution (PSD) can nowadays be controlled
elatively precisely in the crystallization step by adjusting the
upersaturation, seeding, and hydrodynamic conditions in the crys-
allizer (Yu et al., 2007), further downstream fluid-solid separation
teps such as filtration, filter washing, drying, and subsequent
olids handling can often lead to uncontrolled changes in the PSD
ue to attrition and breakage (Müller et al., 2006; Kalman, 2000).
he effect of breakage on the particle size distribution can be
escribed by population balances (Hill and Ng, 1997; Kostoglou,
007). For population balance models of breakage to be effec-
ive, two material- and stress-field specific functions need to be
nown: the breakage kernel (selection function) and the daughter
istribution function (breakage function) (Austin, 1971; Kelly and
pottiswood, 1990). The breakage kernel determines the breakage
ate of particles from each size fraction, while the daughter distri-
ution function describes the size distribution of daughter particles

fragments) that are formed once a particle of a given size does
reak.

Although methodologies for experimental determination of the
reakage kernel and daughter distribution functions are known
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(Gupta et al., 1981), they either require a relatively large number of
experiments or the solution of an inverse problem (Sathyagal et al.,
1995). An alternative approach is based on trying to determine the
functions theoretically (Hill, 2004) or computationally by detailed
mechanistic modeling of the breakage of single particles (Khanal
et al., 2005) or particle ensembles (Bobet et al., 2009; Ketterhagen
et al., 2008). Grof et al. (2007) recently demonstrated the feasibility
of detailed numerical simulation of the breakage of needle-shaped
particles within a random packed bed subjected to uni-directional
compaction, using the discrete element method (DEM). Elongated
particles with a chosen aspect ratio have been created by linking
individual spherical discrete elements by rigid bonds, characterized
by a given bending stiffness and ultimate bending strength. A ran-
domly packed bed of these elongated particles has been formed and
gradually compressed between two infinite parallel solid planes.
The particle size distribution as a function of the compaction ratio
has been studied while systematically varying the individual par-
ticle strength, the initial particle length, and its distribution.

The aim of the present work is to develop and validate a novel
methodology for the determination of the breakage kernel and
daughter distribution functions, based on the combination of com-
putational and experimental techniques. The methodology consists
of four parts: (i) the DEM simulation of needle-shaped particle

breakage under uni-axial compaction as described in (Grof et al.,
2007); (ii) post-processing of the DEM simulation outputs using
population balance models and explicit evaluation of the appro-
priate types of the breakage functions; (iii) experimental study
of the breakage of real needle-shaped crystals under uni-axial

dx.doi.org/10.1016/j.ijpharm.2010.12.031
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
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Nomenclature

a compression parameter (dimensionless)
A die cross-section area (m2)
C span of Gaussian function (dimensionless)
E specific energy input (J/kg)
F compaction force (N)
f(y) compression function (m s−2)
g(F) alternative form of compression function (m/kg)
h bed height (m)
k(Li) breakage kernel (kg/J)
k0 breakage constant (dimensionless)
Li length of a crystal from the ith size class (m)
L0 characteristic length (m)
m sample mass (kg)
N number of size classes (dimensionless)
ni number concentration of crystals from the ith size

class (kg−1)
P compaction pressure (Pa)
ri breakage rate (J−1)
Sm(Li) breakage probability (dimensionless)
U objective function (kg−2)
y relative piston position (dimensionless)
z piston travel distance (m)

Greek letters
ˇ(i, j) daughter distribution function (dimensionless)
ˇ′(x) transformed (universal) daughter distribution func-
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tion (dimensionless)
� breakage exponent (dimensionless)

ompaction; (iv) fitting of the population balance models to the
xperimental data and evaluation of the material-specific parame-
ers in the breakage functions.

. Population balance model

When applying the rigorous population balance model (Vanni,
000) to needle-shaped crystals we assume that the crystals are lin-
ar aggregates of primary particles (or “monomers”) of equal size.
uch a description is consistent with the multi-element particle
odel (Favier et al., 1999; Grof et al., 2007) used for the repre-

entation of elongated (needle-shaped) particles or crystals. This
ssumption makes it possible to correlate the length Li of a crystal
ith the number of primary particles i that form it as:

i ≈ i. (1)

The particle size distribution is then a discrete function, whose
alues ni, i = 1, . . ., N are the number concentrations of the particles
onsisting of i monomers and N is the number of size classes.

Theoretical treatments of Weichert (1992), Fuerstenau et al.
1996, 2004), lead to expressing the population balance equations
or the breakage under uni-axial compression in terms of the spe-
ific energy expended rather than in grinding time as follows

dni

dE
= −ri +

N∑
j=i+1

ˇijrj. (2)
The first term on the right side of Eq. (2) is the rate of death of
articles i to generate smaller fragments, while the second one is
he birth of particles i due to rupture of larger particles.
harmaceutics 407 (2011) 12–20 13

The specific energy input E can be equated with the work of
compression per unit feed mass (Fuerstenau et al., 1996)

E ≈ APz

m
= Fz

m
, (3)

where A is the die cross-sectional area, P is the compaction pres-
sure, F is the compaction force, m is the sample mass which is
proportional to the initial bed height

m ≈ h0 (4)

and z is the piston travel distance which may be expressed in terms
of h0 and h, the initial and instantaneous bed heights

z = h0 − h. (5)

Kawakita and Lüdde (1971) listed 15 equations of compaction
that relate pressure with volume (or bed height). For example the
Kawakita piston compression equation has the form

z

m
≈ y = h0 − h

h0
= abP

1 + bP
= acF

1 + cF
(6)

or

P = y

b(a − y)
, (7)

where y is the degree of volume reduction (or relative piston posi-
tion) and a and b are parameters characterizing the powder. The
parameter a is equal to the initial porosity in the case of piston
compression. By combining relations (3)–(7) and lumping all pro-
portionality constants, the specific energy may be expressed as

E ≈ Py ≈ y2

a − y
(8)

and consequently

dE ≈ 2ay − y2

(a − y)2
dy = f (y) dy. (9)

Breakup is usually a first order process with respect to particle
concentration, since it generally depends on the local stress field
acting on the particles. It is convenient to express the death rate as

ri = k(Li)ni, (10)

where k(Li) is the breakage kernel. There is a strong dependence of
the breakage kernel on particle size, Li. Different breakage kernels
are summarized in (Vanni, 2000; Rajniak et al., 2008).

Finally, introducing (9) and (10) into the rigorous population
balances (2) and lumping different proportionality factors together
we get the population balance equations in terms of the relative
piston position y

dni

dy
= −f (y)k(Li)ni +

N∑
j=i+1

ˇijf (y)k(Lj)nj (11)

with f(y) defined by Eq. (9).
There exist many different fragment (daughter) distribution

functions ˇij defining the number of daughter fragments in class i
produced upon breakup of a mother particle j (Vanni, 2000; Rajniak
et al., 2008). Here we have considered only the formation of two
fragments during every breakage event, i.e. corresponding binary
breakage distribution functions are normalized with respect to con-
j−1∑
i=1

ˇij = 2. (12)
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The breakage kernel is obtained by post-processing of the break-
age events recorded during the computational experiment. The
breakage events were first grouped into M intervals m = 0, . . ., M
according to the compression ratio y for which they occurred. A
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An alternative form of the model equations are based on expres-
ion (6) with the compression force F as the independent variable.
or the specific energy input we can write

≈ Fy ≈ cF2

1 + cF
(13)

nd consequently

E ≈ 2F + cF2

(1 + cF)2
dF = g(F) dF. (14)

The alternative population balance equations then have the fol-
owing form

dni

dF
= −g(F)k(Li)ni +

N∑
j=i+1

ˇijg(F)k(Lj)nj. (15)

In the next chapter we will discuss how the discrete ele-
ent methodology helps elucidate appropriate expressions for the

reakage kernel and daughter distribution functions.

. Discrete element method

.1. Simulation of the compression and breakage of a layer of
articles

A methodology based on the discrete element method (Cundall
nd Strack, 1979) modified to treat non-spherical particles by the
ulti-element model (Favier et al., 1999) has been used to simulate

he movement and breakage of individual needle-shaped particles.
he magnitude and the location of contact forces at each particle
etermine the load on the particle. Particles are treated as loaded
eams in order to calculate bending and shear stresses along the
article. When a set threshold value anywhere along a particle is
xceeded the particle breaks into two daughter particles at the
oint of maximum stress. A full description of the algorithm has
een given in our earlier work (Grof et al., 2007).

In order to determine the breakage kernel and the daughter
istribution function for a sample of needle-shaped particles, the
omputational breakage experiment has been carried out in the fol-
owing way. First, a population of 800 particles with a specified size
istribution was generated inside the computational box with peri-
dic boundary conditions in the direction of the x- and y-axes and
fixed wall perpendicular to the xy-plane (at the bottom boundary

f the box). The particles were allowed to settle down due to gravi-
ational forces in the direction of the z-axis thus forming the initial
andom packing desired. A second wall parallel with the xy-plane
as then placed above the packing and compression was simulated

y a stepwise movement of this piston (cf. Fig. 1). After each step
xial compression and breakage of needle-shape particles.

of the piston, the particles were allowed to move and rearrange
in the packed layer until a static state was achieved. The stress on
every particle was then calculated and particle breakage carried out
where required.

Every breakage event encountered during the simulated com-
pression experiment has been recorded and the following data
collected: (i) the relative piston position (compression ratio)
y = (h0 − h)/h0, where h and h0 are the current and the initial pack-
ing heights, respectively, determined by the piston position; (ii) the
length Li of the (mother) particle before breakage; (iii) if the particle
broke during a given compression step, the length of the shorter
daughter particle. The results collected from simulated compres-
sion experiments of five different particle packings are shown in
Fig. 2, where each curve represents the particle length distribu-
tion at a given compression ratio y. The error bars indicate the
standard deviations due to the five different random realizations
of the initial particle packing. The gradual particle breakage is
clearly demonstrated as the particle size distribution shifts towards
shorter particles and the number of longer particles diminishes
with increasing y.

3.2. Breakage kernel
crystal length, Li

Fig. 2. Evolution of PSD with compression ratio y in a DEM simulation. The error
bars represent the standard deviation obtained by compounding the results of com-
pressing five different random realizations of the initial particle packings.
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reakage probability Sm(Li) is defined as the probability that a
article of length Li that was originally present in the system at
ompression ratio ym disappeared from the system (i.e., it was bro-
en) at some stage while the compression ratio y was in the range
ym ; ym+1). This breakage probability was calculated according to

m(Li) = 1 − ni(ym+1)
ni(ym)

, (16)

here ni(ym) is the number of particles of length Li present in the
ystem at compression ratio ym and ni(ym+1) is the number of such
articles still “surviving” in the system at ym+1. Note that any newly
ormed particles of length Li are not counted into ni(ym+1) when
valuating Sm(Li).

Let us derive the relation between the breakage probability
m(Li) and the breakage kernel k(Li), introduced above. From Eq.
11), the number of particles undergoing breakage during the inter-
al 〈ym ; ym+1) is

ni = (ni(ym) − ni(ym+1)) = k(Li)f (y)�yni. (17)

Assuming that ni=̇ni(ym) and substituting Eq. (17) into the rela-
ion for Sm (16) one obtains

m(Li) = k(Li)f (y)(ym+1 − ym). (18)

The breakage probability Sm(Li) evaluated from DEM simula-
ions is shown in Fig. 3a. Then, as shown in Fig. 3b and c the curves
an be fitted by the sigmoidal and power-law functions of the form:

m(Li) = 1
1 + exp(−�m(Li − L0,m))

and (19a)

m(Li) = ˛(Li − L0,m)�m . (19b)

It can be seen from Fig. 3b and c that the sigmoidal function
rovides a better fit of the breakage probability obtained by DEM
imulation than the power law function. In particular, the sigmoidal
unction satisfies the property that in the limit for large particles,
he breakage probability approaches unity, while the power law
unction diverges. Using a single parameter ˛ for the entire range
f the compression ratio, the power law is able to fit the DEM data
ell only at small compression ratio y, but fails for the two curves

t y > 0.48. A better fit could be obtained by using three parameters
n the power law, i.e., by allowing the value of ˛ to depend on the
ompression ratio. On the other hand, the sigmoidal function is
ble to fit the data well over the entire range of y with only two
djustable parameters.

.3. Daughter distribution function

To evaluate the daughter distribution function ˇ(i, j), the entire
et of breakage events recorded for compression in the range
y0 ; yM 〉 was used. Unlike the breakage probability Sm(Li), there
s no reason to assume that the daughter distribution ˇ(i, j) would
epend on the compression ratio. Moreover, the larger number of
reakage events analyzed reduces the variations of data points in
he evaluated function. Let Di,j be the number of breakage events
here the particle of length j breaks into particles of length i and

− i, respectively, and let i < j − i (i.e. the shorter of the two frag-
ents is given the index i). Then the points in the the daughter

istribution ˇ(i, j) are calculated as

(i, j) = Di,j

j/2∑
Dk,j

, i = 1, . . . , j/2 (20a)
k=1

nd the other half can be completed employing the symmetry of
he distribution

(i, j) = ˇ(j − i, j) i = j/2, . . . , j. (20b)
Fig. 3. Compression-dependent breakage kernel from DEM simulation: (a) compu-
tation data with error bars representing the standard deviation obtained from five
simulation runs, (b) fit of data by a sigmoidal function (19a), (c) fit of data by a
power-law function (19b).

If the breakage is self-similar, then a single daughter distribution
function ˇ′(x), where x = i/j, characterizes the breakage of mother
particles of any length j. For binary breakage (two fragments from
a single breakage event) the daughter distribution functions are
normalized to 2:

j∑
ˇ(i, j) =

∫ 1

ˇ′(x) dx = 2. (21)
i=1 0

The normalized daughter distribution ˇ′(x) obtained from the
DEM simulations is shown in Fig. 4. Based on DEM simulation data
analysis, it has been confirmed the breakage is indeed self-similar,
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s breakage functions for particles of different lengths superimpose
n a single master curve that can be fitted by the Gaussian function

′(x) = 2

�
√

2�
exp

(
− (x − �)2

2�2

)
(22)

ith parameters � = 0.5 and � = 0.1276 ± 0.0016. Therefore, the
aughter distribution for mother particle of length Lj is

(i, j) = 2

j�
√

2�
exp

(
− (i − j/2)2

2(j�)2

)
, (23)

here the linear dependence of distribution width on mother par-
icle length is described by the proportional parameter �.

. Fitting of computational DEM results by PBM

In the previous section, it has been demonstrated that the two
priory unknown functions required in the population balance

quations (11) – i.e. the breakage kernel f(y)k(Li) and the daughter
istribution ˇij – can be directly evaluated by post-processing of
EM simulation results. There are two ways of utilizing the results

rom Sections 3.2 and 3.3. The breakage kernel and the daugh-
er distribution can be constructed directly by finding an arbitrary
unction able to provide a good approximation of f(y)k(Li) or ˇij
ata, then performing a least-square regression of those data and
valuating the function’s parameters. The other option is to use
EM results for proposing suitable shapes of the breakage kernel
nd daughter distribution functions. The parameters of those func-
ions are then found by optimization to achieve the best match
f particle size distribution predicted by PBM with DEM result.
he latter method will be demonstrated in this section. Its main

dvantage is that it only requires the PSD at several compression
atios as its input, which is also the format in which experimental
ata are available (unlike in DEM simulations, the recording and
ost-processing of single breakage events is not feasible in a real
xperiment). Thus, the estimation method for PBM functions and

able 1
itting of the DEM results by PBM.

Breakage kernel, f(y)k(Li) f(y) a k0

f(y)(Li − L0)� Eq. (9) 0.730 0.0185

f (y)
1 + exp(−�(Li − L0))

Eq. (9) 0.733 1.35
harmaceutics 407 (2011) 12–20

parameters can be the same, but the input data can originate either
from a computational or from a physical experiment.

The key observations from the evaluation of the DEM simula-
tions discussed in section 3 are that the breakage kernels can be
more or less successfully fitted by power-law and sigmoidal func-
tions

k(Li) = k0(Li − L0)� (24a)

k(Li) = k0

1 + exp (�(Li − L0))
(24b)

and that the daughter distribution function is self-similar and can
be fitted by the Gaussian function. Let us now find the values of
parameters appearing in the breakage kernel and daughter dis-
tribution function by fitting a population balance model (PBM)
introduced in Section 2 to the DEM results.

After introducing the power-law compression breakage kernel
(24a) into the PB equations (11) with relative piston position y as
the independent variable, the following final form of PBE for each
size class i is

dni

dy
= k0

2ay − y2

(a − y)2

⎛
⎝−(Li − L0)� ni +

N∑
j=i+1

ˇij(Lj − L0)� nj

⎞
⎠ (25)

and similarly also for the sigmoidal breakage kernel (24b). The
parameters ˇij are calculated from the Gaussian daughter distri-
bution function

ˇij ≈ exp

(
− (i − j/2)2

(NC)2

)
. (26)

There are five adjustable parameters in the model equations (25)
and (26), i.e., the compression parameter a, the breakage constant
k0, the breakage exponent �, the characteristic length L0 and span
of the Gaussian daughter distribution function C.

A customized (Compaq Visual Fortran) version of the DIRECT
optimization algorithm (Perttunen et al., 1993; Bjorkmann and
Holmstrom, 1999) was employed for finding the global minimum
of the objective function U

U =
7∑

m=1

N∑
i=1

(nexp
i

(ym) − ncal
i (ym))

2
(27)

constrained by the population balances (25). ni(ym) is the calculated
or experimental number concentration of crystals of the class i at
the piston position ym.

The optimized parameter values and the corresponding objec-
tive functions are compared in Table 1 and a graphical comparison
with the DEM simulation results is shown in Fig. 5. Please note that
the DEM data in Fig. 5 are the same as those in Fig. 2 but they are
shown in the cumulative rather than differential form for clarity.
It can be concluded that the fit is visually satisfactory for both the
power-law and sigmoidal function. The objective function at opti-
mum (U = 0.0113) is slightly better when employing the power-law

breakage kernel than for the sigmoidal kernel (U = 0.0168). A possi-
ble reason is that the functions calculated from DEM results (Fig. 3)
have a sigmoidal shape only for the highest compressions (at pis-
ton positions y6 and y7) as it was already discussed in relation to
Fig. 3. It is interesting to note that the value of the compression

� L0 C U

1.75 6 0.081 0.0113

0.667 12.7 0.07 0.0168
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ig. 5. Comparison of size distribution obtained by the DEM simulation with the
istribution calculated by PB model using (a) sigmoidal and (b) power-law form of
he breakage kernel in the PB equations.

arameter is almost exactly the same for both kernels (a = 0.730 vs.
.733) and is also close to the theoretical value of the initial poros-

ty (ε0 = 0.77) of the needle-shape crystals in the DEM simulation
ample. Also the optimum span of the self-similar Gaussian daugh-
er distribution function is comparable for both cases as it is also
llustrated in Fig. 6b. The values of other optimum parameters are
ifferent because of the different mathematical expressions used
or the breakage kernels.

. Experimental study

The experimental breakage study was carried out using crystals
f a pharmaceutical compound, a white crystalline solid composed
f needle-shaped particles with a mean length of approximately
1 �m and an aspect ratio of 70. These crystals were chosen for
his study because their size, shape and fragility are characteristic
f typical materials encountered during the process development
or active pharmaceutical ingredients (APIs).

The uni-axial compaction breakage experiment was carried out
s follows. First, approximately 4 mg of the powder was weighed

ut and loaded into a 3.8 mm diameter stainless steel die. The
op punch was placed gently into the die, resting on top of the
ample. An automatic texture analyzer (Stable Micro Systems
A.XT2i) was then used to apply force on the sample and measure
Crystal length

Fig. 6. (a) The breakage kernel and (b) the daughter distribution functions in PB
equations.

the force-displacement curve. Each sample was compacted once
under a normal load of 200, 400, 800, and 1600 g (corresponding
to pressures of 0.173, 0.346, 0.692 and 1.381 MPa, respectively)
with the punch displacement rate set to 0.1 mm/s. Once the
specified compression load was achieved, the upper punch was
immediately raised away from the sample. An example of typi-
cal force–displacement curves obtained in the course of a single
experiment is shown in Fig. 7.

Once the sample had been compacted, it was gently pushed
out of the die and into a sonication vial where it was dispersed
in Isopar G with 0.25% Lecithin, which the sample is not soluble
in. The sample was sonicated for 30 s intervals until the pellet was
evenly dispersed in the fluid. A microscope slide was cleaned, and
using a dropper, one drop was placed on the slide from approxi-
mately 1 cm above the slide. The liquid was allowed to air-dry and
then the sample was visualized using an Olympus SZX16 Stereo
Microscope. Ten images were randomly selected from across the
width of the slide and analyzed using the Image Pro Plus software.
The length, aspect ratio, and projected area were the three statistics
taken from each image. From this data, particle size distributions
Representative images of samples compacted to various forces
can be seen in Fig. 8. The evolution of the PSD with increasing
compaction load is shown in Fig. 9 and the mean particle size as
a function of the compaction load is summarized in Fig. 10. It can
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Fig. 7. Example of force displacement curves obtained in the 200 g load experiment.
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Fig. 8. Images of particles used for the evaluation of particle size distribution.
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Table 2
Fitting of the experimental data by PBM.

Breakage kernel, g(F)k(Li) g(F) c k0 � L0 C U

g(F)(Li − L0)� Eq. (14) 3.90 0.0079 1.75 0 1.1 0.0793

g(F)
1 + exp(−�(Li − L0))

Eq. (14) 10.5 0.81 0.75 4 1.2 0.0218
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Fig. 11. Comparison

e observed that particle size plateaus with increased compaction
orce, suggesting that the particles are no longer susceptible to
ni-axial compaction breakage past a certain point.

. Fitting of experimental results by PBM

The experimental data discussed in Section 5 were analyzed by
he same optimization procedure that was used for the DEM data
valuation as described in Section 4. The population balance equa-
ions (15) with the compression force F as the independent variable
ere employed for the calculation of the number concentrations at
ifferent compressions.

After introducing the sigmoidal compression breakage kernels
24b) into the PB equations (15) with the compression force F as
he independent variable, we obtain the following form of the pop-
lation balance model for each size class i

dni

dF
= k0

2F + cF2

(1 + cF)2

×

⎛
⎝ −ni

1 + exp(�(Li − L0))
+

N∑ ˇijnj

1 + exp(�(Lj − L0))

⎞
⎠ . (28)
j=i+1

The values of the optimum parameters and objective func-
ions are compared in Table 2 and their graphical comparison with
xperimental data is shown in Fig. 11. In this case the fit is signifi-
Crystal length / microns

M with experiment.

cantly better when employing the sigmoidal function. This can be
explained by the particle size plateau at higher compaction forces
(Fig. 10) suggesting that the particles are no longer breaking beyond
a certain point and the corresponding breakage kernel indeed has a
sigmoidal shape, as was observed also in the computational “exper-
iments” by DEM.

7. Conclusions

It has been shown that computational and experimental tech-
niques can be combined successfully into a single methodology that
allows the identification of the breakage kernel and the daughter
distribution functions for needle-shaped crystals, and of material-
specific parameters appearing therein. A single-pass uni-axial
compaction experiment has been shown to be sufficient, with no
need for repeated differential breakage experiments. This approach
can significantly reduce the experimental effort and therefore the
time needed for the identification of the breakage kernel and
daughter distribution functions and of material-specific parame-
ters when the breakage properties of a new chemical entity (NCE)
are to be determined. The approach combining modeling with
experiment is particularly valuable in early-phase pharmaceuti-

cal process development when only small quantities of the NCE
are often available and it is desirable to maximize the information
gain from a limited number of experiments. By the combination of
small-scale experimental analysis, population balance modeling,
and DEM simulation, the information needed for the estimation of
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Vanni, M., 2000. Approximate population balance equations for aggregation-
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n-process behavior of the powder can be obtained. Challenge areas
or future research include the simulation of other modes of break-
ge – such as breakage under shear and breakage in the presence
f capillary liquid bridges – as well as the integration of particle
reakage models with large-scale CFD or DEM simulations of entire
rocess vessels in order to predict the overall extent of breakage as
function of process-level parameters.
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